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Development of Quantum Optics in Solid-State Systems
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Pros:

*  Monolithic modules

* Suitable for integration

* Compatible with existing
fabrication procedures

Cons:

* Crystal field broadening
(~THz)

* Heterogeneous quantum
emitters

¢ Short coherence time and
coherence length

*  Not suitable for
entanglement & collective
behavior studies

Reviews by M. Lukin & P. Zoller
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Atom-Photonics Hybrid Systems

Atom-Ring Resonator Coupling

Rydberg Atoms in Hollow-Core Fibers
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Our Approach: Thermal gas + photonic systems
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Population control in Rb vapour

Challenges:
* Long-lived states (~ MHz)
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Experimental Setup
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Photonic device: Plasmonic Lattice

* A 2D periodic lattice with periodicity of 450nm
* Metallic NP of 90nm in diameter and 50nm in height
0 * A coating of 40nm in all directions
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Photonic device: Plasmonic Lattice
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Photonic device: Plasmonic Lattice

i W

2 NH

E075) ‘“‘\",'\h\ﬁ!" ,?,

g

=

0.5 . ‘ ‘
500 600 700 800 900
A(nm)

Image courtesy of Michael Knudson

4/5/17



Ti:Saph laser

780 nm (pump)

Experimental Setup
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Buffer gas effect (I): collisional broadening
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* The absorption spectrum of
Rb around 780nm broadens
due to the collision with
ethane molecules.
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Buffer gas effect (II): Population Transfer
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Controlling the population difference (p,, — p11): Buffer gas effect
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* The absorption of Rb around
795 nm decreases due to the
population transfer.

ethane pressure increases
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Controlling the population difference (05, — p11): Pumping power effect
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* The absorption of Rb around
795 nm decreases as the

' ‘ pumping power increases.
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Conclusion & Future works

pumping power decreases
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The hybrid systems of atoms + nano-photonics would lead to integrable setups for cQED studies.
Buffer gas can effectively broaden atomic linewidths for efficient interaction with engineered photon fields.
Buffer gas & pumping power can control density of the levels from equilibrium all the way toward non-

equilibrium.

ture works:
Investigating the effect of photonic modes on manipulating atomic transitions.

Fine tuning the gain of Rb and resonant mode coherence features toward a lasing action
Using a properly designed photonic mode to make the forbidden atomic transitions possible - new tools for

spectroscopy




Thank you for your attention!

ethane pressure increases

* The hybrid systems of atoms + nano-photonics would lead to integrable setups for cQED studies.
*+ Buffer gas can effectively broaden atomic linewidths for efficient interaction with engineered photon fields.
+ Buffer gas & pumping power can control density of the levels from equilibrium all the way toward non-

equilibrium.
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Device characterization & optical properties of alumina
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Density matrix formulation

ihp = [(ﬁatom+ ﬁint),ﬁ] + Lindblad formulation of decoherence
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